THIN DETAILS MEET LARGE-SCALE 3D-RECONSTRUCTION

Photometric Stereo for Cultural Heritage

Jean MÉLOU

Antoine LAURENT Jean-Denis DUROU

IRIT, Toulouse, France

jean.melou@toulouse-inp.fr

Labcom ALICIA-Vision

Yvain QUÉAU

Marjorie REDON Abderrahim ELMOATAZ

CNRS, GREYC, Caen, FRANCE

yvain.queau@ensicaen.fr

ANR IMG

Digitizing two cultural heritage masterpieces

The Bayeux tapestry XIth century, 70 m long

The Chauvet cave 36,000 years ago, 500 m long

Aim of the project

Develop AI tools for helping the 3D-digitization of these fragile, large-scale artifacts

J. MÉLOU, Y. QUÉAU

When thin details meet large-scale

The artworks are large-scale, yet exhibit extremely thin details:

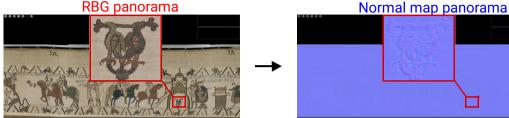
- Wool strings on a linen canvas
- Engravings on limestone

Challenge: digitize both the low and high geometric frequencies, while not deteriorating the artifacts

J. MÉLOU, Y. QUÉAU

Thin Details Meet Large-scale 3D-reconstruction

IAMAHA 2023



1. Case of the Bayeux tapestry

2. Case of the Chauvet cave

3D-digitization of the Bayeux tapestry

RBG panorama

Goal: construct a 2.5D panorama of this 70 m-long medieval wool and linen embrodery, telling the conquest of England by William, Duke of Normandy, in 1066

- ► An RGB panorama is already available: https://www.bayeuxmuseum.com/en/ the-bayeux-tapestry/discover-the-bayeux-tapestry/explore-online/
- Can we convert it to 3D?

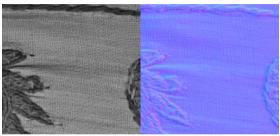
Redon et al., 3D surface Approximation of the Entire Bayeux Tapestry for Improved Pedagogical Access, Proc. ICCV 2023 workshop on e-heritage

J. MÉLOU, Y. OUÉAU

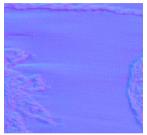
From an RGB panorama to a 2.5D one

High-resolution ($480,000 \times 6,000 \ px$) RGB panorama, created from 86 images acquired in 2017 by La Fabrique de patrimoines en Normandie

Proposed strategy for 3D-digitization


- 1. Store the RGB spatial registration parameters
- 2. Turn each RGB image to 2.5D using deep learning
- 3. Apply the same spatial registration to the 2.5D images

Deep image-to-geometry learning


Input

image

Ground truth normal map

normal map

Proposed strategy for 3D-digitization

- 1. Store the RGB spatial registration parameters
- 2. Turn each RGB image to 2.5D using deep learning
- 3. Apply the same spatial registration to the 2.5D images

J. MÉLOU, Y. QUÉAU

Ground truth geometry acquisition campaign

3D-reconstruction of 12 scenes, based on photometric stereo:

Left: three input images, taken from the same viewing angle but varying lighting

Right: output high-resolution mesh (5M triangles)

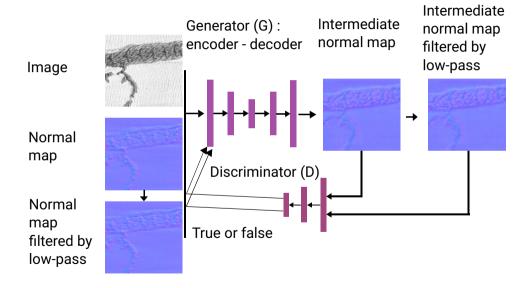
J. MÉLOU, Y. QUÉAU

Ground truth geometry acquisition campaign

We have pprox 30 couples (RGB,normals) of size $3000\,{
m px}^2$

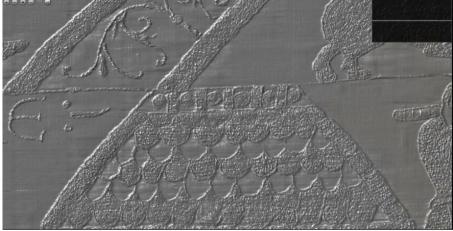
 $\rightarrow~$ Thousands of $128\, {\rm px}^2$ patches for learning the mapping RGB \mapsto geometry

Ground truth geometry acquisition campaign



We have pprox 30 couples (RGB,normals) of size $3000\,{
m px}^2$

 $\rightarrow~$ Thousands of $128\, {\rm px}^2$ patches for learning the mapping RGB \mapsto geometry


Deep image-to-geometry learning

Geometric panorama

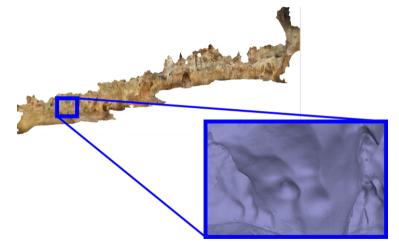
https://redonmarjorie.github.io/projects/BayeuxPanorama.html

J. MÉLOU, Y. QUÉAU

1. Case of the Bayeux tapestry

2. Case of the Chauvet cave

Case of the Chauvet-Pont-d'Arc cave



"Panneau des chevaux" (Chauvet-Pont-d'Arc cave, Ardèche, France)

J. MÉLOU, Y. QUÉAU

Photogrammetry in Chauvet

3D model of the Chauvet cave. Thin details are not reconstructed

J. MÉLOU, Y. QUÉAU

Needs for photometric stereo

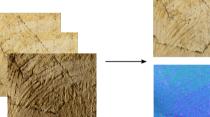
Zoom on the "Panneau des chevaux"

Needs

- Precision: capturing digitized tracings, fine engravings, etc.
- Separate the relief from the color: analysis of the antero-posteriority

Photometric methods

- Have a pixel-size precision
- Separate light, geometry and color


J. MÉLOU, Y. QUÉAU

Classic photometric stereo case

Lighting calibration with a sphere

- Matte or glossy sphere placed in the scene
- Algorithm adapted to each type of sphere
- Sphere can be manually defined

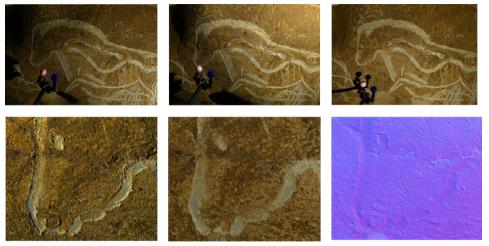
PS on the "Panneau des mammouths raclés". From left to right: one of the 13 pictures, zoom on three pictures and results of PS (albedo and normal map)

J. MÉLOU, Y. QUÉAU

Thin Details Meet Large-scale 3D-reconstruction

IAMAHA 2023

Accessibility constraints in the Chauvet cave

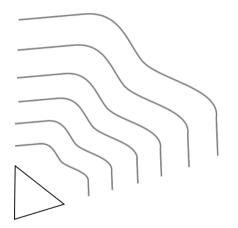


- Spheres are positioned at the end of a pole
- Position of the sphere in the image differs from one image to another
- Automatic detection with DETR network

J. MÉLOU, Y. QUÉAU

Automatic neural lighting calibration

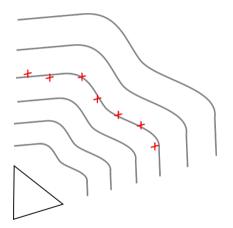
Top: three pictures (out of 16) with calibration spheres on a pole Bottom: zoom on a picture, albedo and normal map


J. MÉLOU, Y. QUÉAU

Thin Details Meet Large-scale 3D-reconstruction

IAMAHA 2023

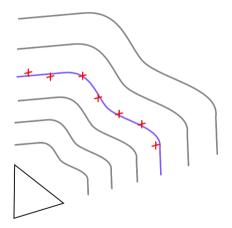
Combining photogrammetry and photometric stereo 💷 😭



Ongoing work

 Depth deduced from normals, up to a scale factor

Combining photogrammetry and photometric stereo 💷



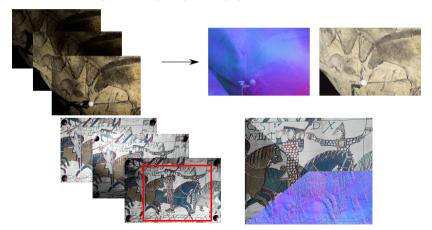
Ongoing work

- Depth deduced from normals, up to a scale factor
- Idea: use the photogrammetric cloud to determine the right scale

Combining photogrammetry and photometric stereo 💷

Ongoing work

- Depth deduced from normals, up to a scale factor
- Idea: use the photogrammetric cloud to determine the right scale


Thank you

jean.melou@toulouse-inp.fr

yvain.queau@ensicaen.fr

https://alicevision.org/labcom-alicia/ https://redonmarjorie.github.io/projects/BayeuxPanorama.html

